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The operator relationship p = [r, hi between linear momentum, position vector and Hamiltonian 
is the basis for an investigation of formulas for fl parameters in extended Hiickel [1] and CNDO [2] 
type methods. The gauge problem of this equation in connection with truncated expansions of matrix 
elements ()~]PlZ') over atomic orbitals is discussed. Formulas for fl parameters useful in extended 
Htickel methods are presented. 

Die Operatorengleichung p = It, h] zwischen Impuls, Ortsvektor und Hamiltonoperator ist die 
Grundlage ftir eine Untersuchung von Formeln ftir g-Parameter in der erweiterten Htickel[1]- und 
CNDO[2]-Methode. Das Eichproblem dieser Gleichung in Verbindung mit abgebrochenen Ent- 
wicklungen fiir Matrixelemente (xlPlX') tiber Atomfunktionen wird diskutiert. Ntitzliche Formeln 
fiir die erweiterte Htickel-Methode werden abgeleitet. 

La relation entre op6rateurs moment lin6aire, position et hamiltonien: p= Jr, hi sert de base 
~t une 6tude de formules pour les param6tres fl dans les re&bodes de type Htickel 6tendu [1] et 
CNDO [2]. Le probl6me de jauge de cette 6quation est discut6 par rapport au d6veloppement limit6 
des 616ments de matrice (xlp[ x') dans une base d'orbitales atomiques. Pr6sentation de formules pour 
les param6tres fl utiles dans les m6thodes Htickel 6tendu. 

1. Introduction 

F o r m u l a s  for fl pa rame te r s  [4] in molecu la r  f r ameworks  can b e  divided in 
two categories :  fl=(xlhefflX') defined over  n o n - o r t h o g o n a l  a tomic  Slater  
orb i ta l s  Z, X' at  different a toms,  f l =  (Alheff l2 ' )  defined over  o r thogona l i zed  
orbi ta ls  2, 2'. In this p a p e r  we shall  deal  p r imar i ly  with the former. ~ pa rame te r s  
refer to a single a tom.  The  orbi ta ls  on which we concent ra te  are those occur ing 
in t r - f rameworks:  2s and  2pa. In the fol lowing we shall  refer to them as s, z for 
one a t o m  and  s', z' for ano the r  a tom. Fu r th e r  d is t inct ion arises from the fact 
that  the effective H a m i l t o n i a n  h~ff for the representa t ive  one-e lec t ron  p r o b l e m  
of  the S C F  M O  formal i sm is different for different levels of app rox ima t ion .  
hef  t is usual ly  assumed  as the S C F  H a m i l t o n i a n  in the extended Ht ickel  
m e t h o d  [1], whereas  a core wi thout  e lectronic  in terac t ion  is used in Pople ' s  
C N D O  m e t h o d  [2]. We  denote  those fl pa rame te r s  which refer to the former  

heft as flHiickel and  to the la t ter  as ffcore" 
In a previous  pape r  [33, general iz ing a suggest ion by  L inderbe rg  [5], we 

discussed how the o p e r a t o r  re la t ionship  pi= [ri, h~] for l inear  m o m e n t u m ,  
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position vector and Hamiltonian of a single electron i in a molecular framework 
can be used to establish approximate formulas for fiparameters. Despite a number 
of illuminating results about the nature of Wolfsberg-Helmholz [6] type 
approximations [1, 7] and other semiempirical suggestions [8, 9], shortcomings 
of the approach become obvious upon closer inspection. These are essentially 
the following: 

i) E~--(zlheff] z) has a singularity for the finite interatomic distance R for 
which the overlap S~ = (z[z') vanishes. 

ii) All ~ values vanish for R ~ oe with the order 1/R. 
iii) fl values approach a values for R--* 0. An improved formula should take 

care of the fact that f l~ �89 a~ �89  e) for R ~ 0 ,  where e comes from the 
antisymmetric part [2 (1 -S) ]  ~/2 (Z-Z') of the symmetrically orthogonalized 
orbitals. 

iv) There is no unique recipe for obtaining results independent of the 
coordinate origin, in a truncated atomic expansion. 

v) ~ and fl parameters depend on the shielding exponents ( of the atomic 
orbitals. If we assume that the AO's are "good" expansion functions for the 
MO's then we have to assume their dependence on the molecular framework. 
The ~'s are consequently dependent on the interatomic distance R. 

vi) There is no a priori knowledge of how the approximations plus the orbital 
exponents influence the interpretation of the Hamiltonian h in p = I-v, h]. 

It can be shown that problems i) and iii) can be avoided by taking more terms 
in the expansions than just the main terms. In particular we have to use 
expansion functions 2s to determine fiz and ~ .  We call this case the coupled 
formalism, in contrast to the uncoupled formalism where fl~ and Ez were 
determined by z orbitals only. We shall comment on it briefly later, iv) was taken 
care of by using the symmetry of the molecule, or more generally the property 
that reflections in the plane perpendicular to and through the middle point of 
the nuclear axis either leave the quantities considered unchanged or change 
their sign. We shall apply this recipe also in this paper, but wish to emphasize 
that this is not the only way to ensure invariance under translations of the 
coordinate origin. Problem v) is still unsolved in a sense that few data are 
available where exponents in molecular frameworks are determined [10-12]. For 
the few quantitative results, we have used Slater's exponents, which for a-electrons 
at intermediate distances seem not to be significantly different from the molecular 
framework exponents [10-12] and so do not disturb the qualitative conclusions. 

Our main concern shall be points ii) and vi). To avoid the vanishing ~'s for 
large internuclear distances we adopt an alternative point of view which is 
concerned with an investigation of the effective Hamiltonian and thus connected 
with vi). We shall show that a form ~ =  KS~ leaves some freedom in the inter- 
pretation of hef e. In particular, since it does not exclude that E~ and gz are 
"atomic" parameters, where the potential term of haf refers to a single atom, we 
shall postulate for practical purposes later e~ = ~ (atom) and g~ = ~ (atom). In 
the final section we extend the expansion to the coupled formalism between 
s- and z-orbitals. We discuss how correction terms to the Wolfsberg-Helmholz 
term for fi influence these quantities. 



Formulas for fl Parameters 303 

2. Gauge Invariance and Effective Hamiltonian 

In our previous paper [-3] we derived approximate formulas, but did not 
concentrate on implications which are closely connected with their derivation. 
In this section, we want to obtain some idea about the effective Hamiltonian 
with which we are dealing. Therefore, we go back to our starting point, the 
Heisenberg equation of motion 1-13-1 

p = [r, h i .  (2.1) 

We realize that the commutation rules allow for an infinite number of 
Hamiltonians which differ only by a potential term V(r). We call this property 
of the Heisenberg equation of motion gauge  invariance.  The linear momentum 
on the left side (2.1) should not depend on a particular choice of an effective 
Hamiltonian. This is guaranteed only in a infinite expansion of the type [,14] 

P,v  = ~ .  (Gzhz~  - h , z r ~ )  (2.2) 
a 

where 2 is a complete, orthogonal set and p,,,  r,~, h,, are matrix elements of the 
operators over orbitals # and v. In a truncated expansion this invariance is partly 
or completely lost. 

Let us consider for example a special case, where we take for 2 only s and z 
at the same atom. Then the following equality should hold approximately 

p= = r ~ ( ~  - -~s) . (2.3) 

Eq. (2.3) is well known in the semiclassical theory of radiation, where the 
transition moment for dipole radiation is defined in either the momentum or 
coordinate representation. We know that (2.3) holds e x a c t l y  if ~z and ~ are 
eigenvalues of an e f fec t ive  Hamiltonian h = haf with 

heffZ(~) = N(0 Z(O.  (2.4) 

In this context, we understand that we are not free in interpreting the effective 
Hamiltonian once we assign values to gz and ~s. Eq. (2.4) is the generalization 
of the Pariser-Parr approximation [15] 

( T +  Up)Zv = Wvzv 

in a molecular framework. To be consistent, we have to use (2.3) to assign a value 
to rs~ =-Irszl = O l z l z 5  

rs z = (21/~)-1 ~/(~z - g~). (2.5) 

The theory on this level of approximations is free of singularities only if there is 
no crossing of the ~z and g~ curves, for any distance R between the two atoms. 

To simplify our investigation on the underlying effective Hamiltonian in 
truncated expansions, we shall compare the Linderberg formula [5] and the 
Wolfsberg-Helmholz formula [3] for ft. For this purpose we rewrite the Linder- 
berg formula similarly to Linderberg and Ohrn's [16] procedure, for a homo- 
21" 
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nuclear diatomic molecule 

1 dS 
f l=  S~ + (1 - S 2) ~ -  d-R-' (2.6) 

2S 
fl-- 1 + S 2 ~" (2.7) 

1 d S .  
The last term ~ - - ~ -  is fl over symmetrically orthogonalized orbitals [3, 5]. We 

recognize that fl is given in a gauge invariant form. However, the exact equation 
fl = ( f l -  S~)/(1 - S 2) proves that fl is gauge invariant only to the first order in S. 

is not gauge invariant. It is obvious that Eqs. (2.6) and (2.7) have different 
transformation properties. This suggests that the effective Hamiltonian of the 
two formulas are different. Some information may be obtained by looking at 

and ~ values of the Hamiltonian 

Z e f f  Z e f f  
h e f  t = T + + - -  

l~a r b 

of a diatomic molecule. The asymptotic behaviour of fl/~ for large R calculated 
exactly with Roothaan's [17] formulas yields 

-fi---, K S ~  , e ~ e  (a tom)  

1 
K -~ for 2p-orbitals 

Z e f f / ~  - -  1 

1 
K ~ for 2s-orbitals. 1/3 

It suggests Ze f f=2(  (resp. 4~) to yield K--,1 and Zef f=~(  (resp. ~() for K ~ 2 .  
So Linderberg's formula which approaches f l=  S~ represents a situation with 
a larger effective charge than the Wolfsberg-Helmholz formula. This suggests 
that in the Wolfsberg-Helmholz case there is accounted for more shielding than 
the core parameter flcor~ represents. Thus Wolfsberg-Helmholz type formulas 
might be used better for Hiickel-type methods than for Pariser-Parr-Pople type 
calculations. Dahl and Ballhausen [18] have reached similar conclusions in a 
different context. On the other hand, we may identify Linderberg's effective 
Hamiltonian with the core Hamiltonian of Pople's CNDO form [9] of 

From (2.6) we obtain 

F = S3A.  

(1 - S 2) dS (2.8) 
fla = ~ + S ~  dR  

and S have to be taken over s orbitals. This identification has the right behaviour 
for large and small R, which was not the case for Wratten's [19] derivation. For 
practical purposes we can take ~ = Es(atom) and regard the second term in (2.8) 
as a molecular correction term. 
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We have seen in the preceding paragraphs that the Wolfsberg-Helmholz 
form f l= KS~  can yield non-vanishing ~ values for R ~  oo and that it refers to 
different effective Hamiltonians for different K values. This opens the way to an 
alternative view of our previous formulas [3]. We recall that a truncated atomic 
expansion with the main term yielded 

dS 1 
dR = Y Rfl" (2.9) 

Whereas the left side of (2.9) is the correct evaluation of the linear momentum 
matrix element, the right side is an approximate representation of the commutator 
[r, hi. ff decreases with the order 1/R too fast for large interatomic distances R. 
This is not serious in molecular calculations, but prevents a formulation of 
ff=KS-~ with an ~---,a (atom) for large R. On the other hand, the main term of 
the orthogonal expansion [20] 

dS 
dR - Rfl (2.10) 

is a more flexible approximation which is still invariant to the first order in S. 
We therefore suggest the following procedure. We use truncated asymmetrical 

atomic expansions of type (2.9) and truncated symmetrical expansions of type 
(2.10) to establish equalities, between fl and fl, where slopes of overlaps dS/dR 
are used only as intermediates. This leaves some freedom for ~ values. Then we 
can assume ~ values which have the proper atomic limits as outlined above. In 
other words, we suggest not to determine the gauge by slopes of overlap 
according to (2.9), but by the requested asymptotic behaviour of ~. 

In the next section we want to investigate which correction terms occur to 
the Wolfsberg-Helmholz form of fl in the coupled formalism of s- and z-orbitals. 

3. Relations between ~ and/~ Parameters over 2s- and 2pa-Orbitals 
in the Coupled Approximation 

We use a coordinate system x, y, z at atom A and x', y', z' at atom B in a 
homonuclear diatomic molecule with the following conventions: x ' =  x, y ' =  y, 
z ' = z - R  where R is the internuclear distance between A and B. (This is 
different from the coordinates in our previous paper [3] where we used 
z' = R -- z.) We define the six parameters 

~s : <sl haf[ s>, 

-~z = < z l h e f f [ z >  , 

"~s z :  <S[ hefflz> , 

"~:  <slheffls' > ; 

K = <zlhefflz'> ; 

K~=<slhefflz '>. 

(3.1) 

We shall also use the following notation for the overlap integrals 

Ss=<sls'> , Sz=<zlz '> , Ssz=<slz'>. 

In the following we want to derive equations which relate fl parameters to 
parameters. We use the same approach as previously [3] starting with Eq. (2.2). 
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For  the symmetric expansion we use four expansion functions for 2, namely 
21=Nl(s+s') ,  2 2 = N z ( s - s ) ,  23=Na(z - z ' ) ,  24=N4(z+z') .  Here we have 
neglected all terms with Ss~ which would be necessary to make 21 exactly 
orthogonal to 23 and 2z to 24. An investigation has shown that their importance 
is minor for a qualitative discussion of the final results. This yields three non- 
redundant relations between p, r and h matrix elements in the orthogonal basis. 
Subsequent substitution of the orthogonal functions by the non-orthogonal 
s, z, s', z' functions yields essentially relations of the type 

dS~ 
- fi(R, r~, ~ ,  -fi~, ~ ,  -fl~, ~z, g~) , 

dR (3.2) 

S~ = S~, S~ or S~. 

We use an asymmetrical atomic expansion with two orbitals s and z to obtain 
three additional equations of the type 

dS~ 
dR - gi(R' G~' ~s' -fl~'-~' L '  ~s~' gz) ' 

(3.3) 
S~ = S~, S~ or S~.  

The atomic expansions are symmetrized, similar to Ruedenberg's suggestion [21], 
i.e. they are averaged over expansions s, z at atom A and s' and z' at atom B. 
Both should yield the same results for dSddR. 

We use Eqs. (3.2) and (3.3) to establish three relations fi = gi between the six 
and fi parameters. This allows us to establish a dependence of the three 

parameters on the ~ parameters. There are only minor approximations necessary 
to obtain the final equations 

rsz 1 - S ~  
2S~ -~ + (S s + Sz)-~sz (3.4) 

• -  I + S  2 R I + S  2 ' 

r~z 1 - S  2 2sz ~ + (s~ + s3-G (3.5) 
L -  1 + S  2 R 1 + S  2 

fl~_- S~-S~~s~+ Gz (1 - S~)(1 - S~) [ ( S ~ -  S z ) ~ -  2S~(1 - S ~ ) ~ ] .  (3.6) 
1 - S~S~ R 1 - S~S~ 

The first terms are the Wolfsberg-Helmholz terms ffWH, the second terms are the 
next higher order corrections. A qualitative study for small and large R reveals 
the following: 

The second terms on the right sides vanish for R---, 0. This can be proven by 
using that S ~  1 -  aR 2 for small R. The numerators are proportional to R 3 
resp. R 6, the denominators proportional to R resp. R 3. In the limit R ~ 0  the left 
sides and the first terms on the right side of (3.4) and (3.5) converge to the 
corresponding E-values. In (3.6) flsz approaches -0 .687 ~sz- This is not strange 
if we consider that ~z is zero for the atomic case. Our coordinate system implies 
that ff~z is not bonding, so it should be positive, whereas g~ is the interaction 
between the electronic distribution sz at atom A and the effective core of 
atom B, hence it is expected to be negative. For large R, the first terms on the 
right side of fls, flz and fisz have coefficients proportional to S the second terms 
to S/R. 
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T a b l e .  "ff values (eV) and correction terms A fl (%) dependent on the interatomic distance R (a.u.) 

R L A K  a L a L  a K z  A K ~  a 

O. 1 - 21 .408 0 .000  - 11.447 0 .004  O. 162 - 0.001 

0.3 - 21.475 0 .004  - 11.798 0 .036  0.503 - 0 .009 

1.0 - 21 .837 0 .029 - 11.393 0 .289 1.974 - 0 .032 

1.6 b - 2 0 . 9 1 5  0 .034  - 1.393 1.531 2 .946 0.025 

2.0 - 19.178 0.023 3.951 - 0 . 2 0 6  3 .030 0.103 

2.65 ~ - 14.966 0 .004  6 .730 - 0.011 2 .312 0.279 

3.0 - 12.408 - 0 .0002  6.693 0 .0004  1.753 0.389 

4.0 - 6 .069 - 0 . 0 0 1 6  4 .594  0 .002  0 .574 0.703 

5.0 - 2 .460  - 0 . 0 0 0 4  2.271 0 .004  0 .152  0.905 

10.0 - 0 .008 - 0 .0000  0 .010 0 .000  0.0001 1.000 

a A fl  = (fl - f l w ~ ) / f l .  
b Sz (1.55) = 0. 

N e a r e s t  n e i g h b o u r  d i s t a n c e  in  b e n z e n e .  

To obtain some quantitative information about the coupling in a C-C frame- 
work, we introduce, for practical reasons, the following drastic assumptions: 
( shall be taken, as Slater's rules prescribe, as (c-- 1.625, and gs and ~z are the 
negative atomic valence state ionization potentials -21.4 eV and -11.4 eV [1]. 
These numerical values are well in agreement with the qualitative argumentation 
of asymptotic behaviour of ~ values in the previous chapter. The Wolfsberg- 
Helmholz form (2.7) yields Zef f = 5 (  = 1.4 for s-orbitals and Z e f f = 3 (  = 2.4 for 
p-orbitals. Calculation of Zef f from the ~ s z l (  2 - - 1 N e f f (  and ~ z ~ � 8 9  2 1 - -  ~- Z e f  f ( 

with the use of the above ionization potentials and Slater exponents results in 
Zef f = 1.5 for s-orbitals and Zef f = 2.1 for p-orbitals. Gz is determined by (2.5) 
and is constant. This means, we take the infinite distance as representative for 
all distances. This meets with the usual assumptions of Hfickel type methods 
and is not unreasonable for intermediate distances which we encounter in 
aromatic systems. For the limit R~0 ,  carbon valence state potentials and 
carbon ( values would have, however, no physical significance. We calculate 
7~z tentatively by 

~ z  = - �89 S ~ z ( S s ~  - S ~ ~ )  . (3.7) 

This is based on expansion of orbitals s, z in s' and z' and application of the 
virial theorem for atoms, an idea similarly expressed by Cusachs [7]. (3.7) is 
approximately valid for small and intermediate distances. The table shows fl 
values and the influence of the correction terms in (5.1) for various distances. 
We conclude that corrections to the Wolfsberg-Helmholz form for fl can be 
neglected for s-orbitals. For z-orbitals they are important at distances where S~ 
vanishes. They effect a shift of the node of flz- For ff~z they cannot be neglected 
but represent an essential part of the formula. In particular, the magnitude of 
fl~z is not negligible for intermediate distances when compared with fls and flz. 

One final comment might be appropriate with regard to the singularity of ~z 
in the uncoupled approximation [3]. We could have removed this singularity in 
the coupled formalism by extending our previous procedure of determining the 
three ~'s by a combination of slopes of overlap with the help of (3.1) or (3.2). We 
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have checked tha t  the key  quan t i ty  r~, when chosen accord ing  to (2.5), fulfills 
an inequal i ty  ar is ing in the  procedure .  W e  have preferred no t  to present  detai ls  
of this way  since the wrong  behav iou r  of ~ for large R when de te rmined  th rough  
dS/dR terms canno t  be r e m o v e d  even in the coupled  app rox ima t ion .  

4 .  C o n c l u s i o n  

W e  have used t runca t ed  expans ions  for the mat r ix  e lements  of the o p e r a t o r  
re la t ion p = [r, hi over  a tomic  orb i ta l s  to es tabl ish  a p p r o x i m a t e  re la t ions  between 

and  ~ pa r ame te r s  in ex tended  Hi ickel  methods .  Some clar if icat ion abou t  hef  t 
under ly ing  these p a r a m e t e r s  was given t h roug h  an inves t iga t ion  of gauge p r o p -  
erties of t runca ted  expansions .  It was shown tha t  the gauge invar iance  of h in 
p = [r, hi is pa r t ly  or  comple te ly  lost  in a t runca ted  expans ion  and  that  we are  
dea l ing  with effective H a m i l t o n i a n s  h = hef t which depend  on the app rox ima t ion .  
We showed an a l te rna t ive  v iewpoin t  of  the formulas  previous ly  der ived [3] 
which al lows the ~'s to  converge  p rope r ly  to a tomic  pa rame te r s  for large inter-  
nuclear  distances.  O u r  ma in  concern  then was the coupl ing  between mat r ix  
elements  over  s- and  z-orbi ta ls .  This  gave rise to pa rame te r s  ~s~ and fi~. The  
influence of  these pa r ame te r s  in the formulas  [(3.4)-(3.6)] was es t imated  by 
assuming a tomic  pa r ame te r s  ~s = c~ (atom) and  ~z = ~ (atom) and  subsequent ly  
calculating fls, fl~, fl~z, ~z. W e  found the usual  Wol f sbe rg -He lmho lz  te rm sufficient 
for ~ ,  but  insufficient for flz and  ~sz. In  par t icu la r ,  the magn i tude  of  ~= is not  
negligible c o m p a r e d  to ff~ and  ffz at  in te rmedia te  distances.  

Note. In Ref. I-3], the absolute signs in formulas (5.7) to (5.9) should be replaced by parentheses, 
since the polarity is taken care of by the definition of Ro. We thank Prof. D. P. Chong for pointing 
this out to us. 

Acknowledgement. We greatly appreciate comments and suggestions by Prof. F. E. Harris on 
contents and presentation of this paper. We thank also Prof. W. Rhodes for reading the manuscript. 
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